AD=A062 856 CARNEGIE~MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2
TARTAN., LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: REFERENCE ==ETC(U)
JUN 78 M SHAW, P HILFINGER» W A, WULF Funszo-vsit-oovu
UNCLASSIFIED CMU=CS=78-133 AFOSR=TR=78-1521

. BlEEEEEEENE
EEEEEREEAERE

END

DATE
FILMED

79
oD

-2
: m I..
el ELR.
e I =

= = =
N 5 ‘mr'f'*j

=

CMU-CS-78-133

TARTAN

Language Design for the I[ronman Requirement:
Reference Manual

V § < Mary Shaw | 3
: : Pad Hilfinger !
Wm A Wulf i

Compuler Science Department i
Carnegie-Mellon Universily |
Pittsburgh, Pa. 15213

June, 1978

Abstract: Tartsn is an experiment in language design The goal was to determine whether
a “"simpie” language could meet substantially all of the [ronman requirement for a2 common
high-order programming |anguage.

We undertock this experiment because we Delieved that all the designs done in the first
phase of the DCO effart were loc large and oo compiex. We saw that complexity as a
serious feilure of the designs: excess complexily in & programming langusge can interfere with
its use, even to the extent that any beneficial properties are of little consequence. We wanted

| " to find out whether the requirements inherently lead to such complexity or whether a
B substantisily simpler language would suffics.

Three ground rules drove the experiment First, no more then two months — April 1 to
May 31 -- would be devoled to the project Second, the language would meet all the
[ronmen requirements except for a few points at which it would anticipete Steeirnan
requirements. Further, the language would contain no extra features uniess they resulted in a
simpier language. Third, simplicily wouid be the overriding objective.

The resuiting larquage, Tartan, is besed on all availsble information, including the designs
siresdy procduced. Tie language definition is presented here: 8 companion report provides an
overview of the lenguage, 8 number of exampies, and more expository expianations of some of
the lenguage festures.

We belfieve that Tartan is a substantial impravement over the esrlier cesigns, particularly in
its simplicity. There is, of course, no objective messure of simplicity, but the syntax, the size
of the definition, and the number of concepts required are all smaller in Tartan

Moreaver, Tartan substantisily meets all of the [ronman requirement. (The exceplions lie in a
few places where we anticipsted Stesimen requirements and where detsils arw still missing
from this report) Thus, we believe that s simple langusge can meet the lronmen requirement. :
Tartan is an exislence proof of that

We must emphasize again that this effort is sn experiment, not an attempt to compete with |

‘ DOO contractors. Tartan is, however, sn open cheilenge to the Phase [I contractors: The ‘
. lsnguage can be at lesst this simpie! Can you do better?

This work was supported by the Cefense Advanced Resesrch Projects Agency under contract
F44620-73-C-0074 (monitored by the Air Force QOtfice of Scientific Resesrch).

Tartan Reference Manual

1. Basic Concepts and Philosophy
2. Basic Structures

2.1. Primitive Expressions
2.2 Identifiers
2.3. Lexical Considerations

3. Expressions

3.1. Invecations
3.2 Oynemic Allocation

4. Statements

4.]1. Blocks

4.2. Sequenced Statements

4.3. Assignment Statement

4.4, Conditional Statements

4.5. Loop Statements

4.6. Unconditional Control Transfer
4.7. Excaptions

4.8. Parallel Process Control

S. Types

S.1. Scalar Types

$.2. Composite Structures
5.3. Oynamic Types

5.4. Process Control Types
S.5. Oefined Types

6. Definitions and Declarations

6.1. Declarations

6.2 Modules

6.3. Routines

6.4. Exceptions

6.5. Type Definitions
6.6. Generic Definitions
6.7. Transiation [ssues

1. Standard Definitions

I.1. System-Dependent Cheracteristics
1.2 Properties of Types
l.2.1. Fixed
1.22. Flost
1.23. Enumerations
1.24. Boolean
1.25. Characters
1.26. Latches
1L.27. Arrays
1.28. Sets ¢
1.29. Oynamic Types
1.2.10. Records
L.211. Variants
1.212. Strings
1.213. Activations
1.2.14. Actnames
1.215. Files
1.3. Alphabets

1. Collected Syntax

DVOW W N OO UDW Wr

AN B T B

Tartan Reference Manual -1-

1. Basic Concepts and Philosophy

A program is a8 piece of text that describes a sequence of actions intended to effect a computation.
The process of “executing a program® lo abtsin this effect is called elaboration of the text.l

Programming langusges are used for communicating programs, both between people and between
people and machines. Although the program text is static, the concepts being communicated are
dynamic. This dynamic nature of a computation can make it difficuit to communicate the ideas
underlying a program, and especially to communicate these ideas between people. To expedite the
communication, we impose structure on the way languages are used Aithough this struchure restricts
what can be written, it results in reguisr patterns for expressing decisions. The human reader benefits
from this by developing expectations about how these idess will be expressed

Programming languages encourage the imposition of structure by providing notations for the
structures whose use their designers wish to promote. During the process of lsnguage design, our
beliefs about programming methodology and the state of language processing technology lead us to
formulate concepts and structural rules. We then select syntactic forms and structuring festures to
emphasize these concepts. We expect that this will simplify the task of describing programs with the
attributes we view as “good structure® and thet programmers will, as a result, be encouraged to
organize their programs this way. :

We distinguish three dominant struchures in Tartan programs: (1) the lexical structure, which
organizes the static program text, (2) the control structurs, which orgenizes the dynamic execution, and
(3) the data structure, which orgsnizes the information on which computstions are performed.

= Lexical structure is a property of the program text. Programs sre divided hierarchically into
sections, called lexical scopes, thst share information sbout data. Scope determines the
interpretation of identifiers, so all the text in 8 given lexical scope sheres the same
vocsbulery -- definitions, varisbles, etc. Scope rules permit soma identifiers to ba used with
the same interpretation in several lexical scopes

- The control structure of the program determines the order in which its statements sre
executed ;

- The structre imposed on data invoives the concepts of type, values, and variables.
Ultimately, computations are performed on valucs: we take that notion to be primitive: values
exist, and esch hes exactly one type, which determines the legsl operations on the vaiuve.
Values ere stored in varisbles, which sre objecis produced by elaborating type definitions.
Varisbles, too, have types: these types determine the sets of velues that mey legaily be
stored in the verisbles.

These fundamentsl structures intersct in 3 number of ways. Two major interactions appesr as the
concepts of exient and binding The control snd lexical structures interact to determine extent. The
extent of 8 verisble is its lifetime -~ the time during which it effects or is affected by the elsboration
of the program. Binding rules sre invoked by beoth lexical and control structures; they associate
identifiers with progrem entities (cbjects, modules, routines, types, labels, and exceptions).

In Terten, programs ere composed of definitions, declerstions, and executable statements. A
definition binds en identifier to 8 module, routine (procadure, function, or process), type, or exception;
it is processed during transistion A declarstion binds en identifier to en object (i.e, @ veriable or
value); it is processed at run lime, usually to allocste storsge. Executable statements sre elaborsted at
run time to effect actuel computations -- menipulstion of veluss.

Lexical structure is imposed on Tertsn programs by blecks end modules, which delimit lexical

scopes. These scopes may be nested arbitrarily. Both constructs mey use identifiers defined in other
scopes; both may define identifiers that can be used in other scopes. Blocks and modules differ only

IwWe use the word “elaboration”, in preference to “"execution®, to connote sctions teken during
transiation as well as during execution Eleborstion mey be thought of es an idedlized, direct execution
of the textusl version of the program

B wremm—

T A T—

Tartan Reference Menual -2-

in their scope rules and in their effects on the extent of varisbles. Tartan has two scope rules:

- An open scope inherils (imports automatically) all the identifiers that are defined in its
enclosing scope. It mey not export any identifiers. Blocks are open scopes excepl when
used as routine bodies.

- A closed scope inherits all identifiers that are defined in its enclosing scope except those for
labels and nonmenifest objects.! It may explicitly import identifiers for objects, provided they
have global extent. All modules are closed scopes, ss are blocks when they are used as
routine bodies. A closed scope thet is a module may export identifiers that neme variabies,
modules, routines, types, or exceplions.

Identifiers that are exported from an inner scope or imported from an outer scope have the status of
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted; however,
this does not prohibit overioading of routine names. In addition, the same identifier may be imported
with different meanings from two different scopes. Such identifiers are qualified with the names of the
modules in which they were defined: thus they are not duplicate definitions. Similarly, litersls and
constructors are qualified with their types to prevent ambiguity. [n either case, the module or type
qualifier may be omitted if no ambiguity arises.

In Tartan, extent is controiled exclusively by biocks. Only instantiated objects (variables, constants)
have extent. Variables are instantialed by the eisboration of decisrations (for named veriables) and by
explicit construction of variables having dynamic types (dynamically crested verisblies) Named
variables have extent coincident with the surrounding block. Oynamically crested veriables have extent
coincident with the biock containing the definitions of their dynamic types. Formel parameters of
routines are considered to have exient coincident with the routine body.

Tartan provides a facility for making generic definitions of routines and modules. This allows the
programmer to write a single textual definition that serves as an sbbrevistion for many closely-related
specific definitions. The definitions may accept parameters; the parameters are completely processed
during transiation. The effect of using a generic definition is that of lexically substituting the definition
in the program at the point of use.

The syntactic definition of Tartan uses conventionsl BNF with the following eadditions and
conventions:

- Key words (reserved words) snd symbols are denoted with boldfece.
- Metasymbols are denoted by lower-csse letters enclosed in anguiar brackets, e.g, “<stmt>",

- The symbols { and } (not in boidfacs) are meta-brackets and are used to group constructs in
the meta-notation.

= Three superscript cheracters, possibly in combination with a subscript character, are used to
denote the repelition of 8 construct (or 8 group of constructs enclosed in {}):

%" denotes “zero or more repetitions of®

“+° detiotes “"one or more repetitions of”

“s" denotes “precisely zero or one instance of".
Since it is often convenient to denole lists of things that are separated by some single
punctustion merk, we denote this by plecing the punctustion mark directly below the

The sementics of the languege are described in English In the interest of a compact and reguiar
syntax, we have allowed syntactic constructs that sre dissllowed on semantic grounds. This is
consistent with standard practice with respect te, for example, undeclared identifiers.

ILiterv.s and identifiers for varisties thet ere deciered menifest sre menifest objects; hence
they are inherited.

P e 13

Tartan Reference Manual -3-

2. Basic Structures

2.1. Primitive Expressions

<const> uw <digit>* (. <digit>* }® | trve | faise | nil | closed | open | mint | emptly
| <constructor> | <id> | <qual id> ' <const> | <type> ' <const> | <expr>

<constructor> = (<eupe>®) | ({ <option> <) <expe> | *) | © <char>® ©
Some examples are:
123.456
Calor'green
true
Person’ ("Sem",21,.nsle)
n.'gn
(1..2->8.1, 3..6->8.5, othars->1.0)

Primitive expressions form the basis for the recursive defintion of expressions. They ere the
elements referred to as constants, literals, and constructors in programming languages and as

‘generators in slgebras.

Constants and literals denote velues. The type of a constant is determined by its declaration The
types of literais are determined as foliows:

~ A sequence of digits containing no decimal point is of type Int. Type Int is defined in terms
of type fixed for each machine as described in Appendix L.1.

- A sequence of digits containing a decimal point is of type Resl. Type Resl is defined in
terms of type float for esch machine as described in Appendix I.1.

- If » sequence of digits, with or without @ decimel point, is quslified by a fixed or flost type
6r by 8 defined lype that is ultimately defined in terms of fixed or flost, the type of the
litersl is determined by the qualifier.
ne

-7 and falss denote bociean vaives. Nil denctes the null value for sny dynamic type. Open
end closed denote values for laiches. Emply denotes the emply sst Mint denotes an
activation of any process in mint state.

= A cherscter string containing one cheracter is @ literal of ltype char. Any other charscter
string is 8 constructor of type string.

Literals snd manifest expressions are evaluated during trensistion with the same algorithms and
sccurscy as are used during execution

It an <id> is to be & <consty, it must have been declared const or be & member of sn enumerated
type. If an <expr> is to be 8 <const>, it must be 8 menifest expression

The type of s constructor may be indicated by a prefixed qualifier. If the qualifier is omitted, the
constructor is sssumed to give the value of an errsy indexed with integers beginning at 1.
Constructors sre provided for composite end dynemic types.

- It the constructor has 8 record type, the <expr>s in parentheses give the field vaiues in the
order of their declerstion

- If the constructor has sn array type, the perenthesized list gives the element values. If the

constructor is @ simple expression list, it gives values in order from lowest index to

highest. If the constructor uses the form with ons, the expressions in the <option>s

indicste the erray position to which esch vaiue corresponds. The special constant others may

sppesr 8s the lest <option>; it will metch any constant not included in eny other

<option>. The constructor form with options is legal only for srrays for types ultimately
the -

g
:
:
i
7
3
3
;
§

TR —

Tartan Reference Manuasl -4-

= It the constructor has dynamic type, the result is a pointer to a8 new variable having the
attributes supplied in the type qualifier and the value given by the parenthesized list.
A constructor contsining no <expr> provides an uninitialized instance of the indicated type.

2.2. ldentifiers
<var id> uw <qual id> | <var id> (<actuals>) | <var id> . <id> | <var id> (<range>) | Rep' <id>
<range> uw <g@xpr> . . <qxpr> | <type>
<option> uw { <const> | <range> } *
<qual id> uw { <id> ")® <id>
<id> uw <lgtter> <letter or _ or digit>®
Some examples are:
Animal'Cat
vVI(3)
vi1..N)
Sam.Age
ldent_wi th_mark
Identifiers have no inherent mesnings. They are associated with objects, routines, modules, types,

statements, and exceptions. Declarations and definitions establish the meanings of identifiers within
particular scopes.

Identifiers may be simple, or they may be qualified with module or type names in order to rescive
ambiguity smong names exported from several modules.

Identifiers that name objects are <var id>e. They may be simple identifiers, they may be qualified
to indicate where they were defined, or they msy neme elements or substructures of composite
structures.

i - Simple <ver id>s (i.e, <qual id>s used as <var id>s) are identifiers declared in variable
declarations or by the <formals> in a routine header.

- The form <var id>(<actuals>), where <var id> denctes an array, denctes the element of that
arny{nduodbyth.«cmdu. The types of the actuals must match the index types for the
array.

- The form <var idx(<actusis>), where <var id> denotes a varisble of a variant type and the
<actusl>s consist of a single <expr>, indicates that the tag field of the <var id> must be
<expr> and denotes the value of that option of the variant type. On tha left side of an
assignment, this form has the effect of setting the tag field; the expression on the right side
of the assignment must be of compatible type.

- The form <ver id>(<range>) denotes s subarray. The <ver id> must denote an array and the

limits of the <range> must metch the declered type of the arrsy’s index set and be a
the indicated elements of the <var
id>, in the same order as they sppesr in the <var id>. If the index type of the array is fixed

]
7
§
i
:
)
!

or defined in terms of fixed, the subsrray is indexed by integers beginning with 1; otherwise
it is indexed from the minimum value of the index set of the array.
- It <var id> denoles a record object, the form id>.<id> es the field named <id> in

denot
record object If <var id> denoles an object of dynamic type, then <var id>.cid> denotes
of <var id>; <ver id> must
a veriant tag or the
it T is @ variable of
dynamic type, T.ell is the compiete value (all components) of the object associated with T.

Tartan Reference Manual 3 8-

- The form Rep’<id> is used in the same scope as the definition of the <id>'s type lo indicate
that the <id> is to be regarding as having the underlying type. This permits operations on
the underlying type to be used for defining operations on the new type.

identifiers that refer to definitions (e.¢, of routines, types, or madules) ara <qual id>s.

When an idenlifier is exported from a module, in the scope to which it is exported it is referred to
F by @ <qual id> or <var id> constructed by prefixing the identifier with the name of the module from
which it is exported. The qualifier is separated from the identifier with an apostrophe. Qualifiers may
l be omitted if no ambiguity resulls.

) A <type> used as 3 range must be fixed, an enumerated type, or a defined type that is ultimately
defined in terms of fixed or an enumeration

2.3. Lexical Considerations

Spaces may be inserted freely belween lexemes without altering the mesning of the program. An
end-of-iine is equivalent to a space and may not be part of a lexeme. Al least one spsce must
appeer between any two adjacent lexemes composed of letters, digits, underbar, and decimal peints. In
identifiers, all characters are significant, but siphabelic case is not. :

Comments sre introduced by the character “I" and terminated by the next following end-of-line. 3
They have no effect on the elaborstion of the program. .

Although the language as presented in this report takes advantage of characters that are nrot in the
64-cheracter ASCll subset, simple substilution to mep programs into that alphsbet are defined in
Appendix L

Tartan Reference Manual -6~

3. Expressions
<expr> 1w <ynop>® <var id> | <unop>® <const> | <unop>® <func call>
| <unop>® (<expr>) | { <expr>) . <id> | <expr> <binop> <expr>
<unop> e e |
<binop> uw B | [fef=|<iSI>|2]1ald]|Alcand|v|cor|?
<func call> uw <qual id> (<actuals>)
<actuals> B Ql’f>"

Some examples are:

x
x +y
sin(x)
~(ney + 20u)
(Root.Ptr) . all

Expressions describe computations that yield values. The elaboration of an expression produces an
object containing the velue of the expression The type of the object is determined by the following
rules:

- The type cf an <expr> that is a <var id>, <const>, <func call>, or selection of a field from a
computed composite value is determined by the appropriate declaration (or rule for literals).

- The type of a parenthesized expression is the lype of the expression inside the parentheses.

- The type of a binery infix expression or a unary expression is determined by the definition
of the appropriate binary or unsry operator definition. These operators represent
invocations of functions that may be overicaded. The appropriste aperator definition must
therefore be determined on the basis of the types of the operands.

The usual operations are associated with the operators +, =, ¢, /, T, =, A, Vv, cand, cor, <, £, 2, >, =,
and #. The programmer may overioad these function names, but the added definitions must be unary
or binary to conform to the established syntax. Precedence ruies for the unary and binary operators
are given by the following tabie, in which operators on a single line have the same precedence and
operators higher in the table bind more tightly than operators lower in the table. Unary operators
have the highest precedencs.

- -

T
s /
¢ -
< £ 2 > 68 4
A cand

v cor

Within precedence levels, associativity is left-to-right.

For all operators except cand and cor, elaborstion of an expression proceeds as if the expression
were written in functionsl form (see section 3.1). For cand and cor, the left operand is elaborated first
and the right operand is elaborsted only if necessary.

A maenifest expression is a litersl, 8 value of an enumerstion type, an identifier declared with
manifest binding, a generic parameter, a manifest type attribute, a constructor involving only manifest
expressions, or any expression involving only these expressions and language-defined operations. The
value of 3 manifest expression is known during transiation

Tartan Reference Manual

3.1. Invocations

Some examples are:

F (S)
Sequence’ Insert(S,5)
PO

An invocation causes the elaboration of a procedure or function body with the elements of the
<formals> list of the routine bound o tha elements of the <actuasis> list provided by the invocation. [f
a routine name is overioaded, the definition whose formal perameter types match the types of the
actual parameters is selected. Procedure and function invocations (<proc call> and <func call>) differ in
that procedure invocations are statements, whereas function invocations are expressions having values.
An invocation consists of the following steps:

- Elaborate each of the <actuals> in an unspecified order, yielding a sequence of objects.

- For esch result formal, creste a varisble having the same type and attributes 2s the
corresponding actual. Bind the result formals to these variables.

- For esch const or manifest formal, create an object of the specified type with the same
sttributes as the corresponding actusl. Copy the vealue of the actusl into the new object. 1

- Bind each var formal to the corresponding actusl, which must be a variable (L.e., a <ver id>).
Thus var formals are passed by reference.

- With the bindings estabiished, elaborate the body of the routine.

- For each resuit formal, copy the final vaiue of the variable bound to that formal back into
the corresponding actusl, which must be a variable (i.e., a <ver id>). Note that this actusl is
determined before the elaboration of the routine (i.e., for the actual A(i), it is the initial and
not the final value of i that determines the veriable that receives the resuit).

The result of a function is treated as a resuit parametar instantisted at the call site with extent as
described above and passed as an implicit parameter to the function. Ouring the elaboration of the
function, its value is developed in this resull parameter.

During elaboration of a function, assignment to a varisbie that is not local to the function body (or to
the body of a routine it invokes, directly or indirectly) is permitted only if the function is never
invoked in a scope where such a change is made to a verisble or component that is directly
accessible by the caller.

Actual parameters are matched with formal parsmeters pasitionally. They must satisty restrictions on
type, binding and aliasing.

- The type of an actual parameter is acceptable if its <type name> exactly matches the <lype
name> of the corresponding formal perameter. Type attributes (instantiation parameters of a
type) play no role in type checking. Chepter 5 gives rules for determining <type name>s.

- The binding of the actusl perameter is acceptable if it matches the <binding> of the
corresponding formal perameter according to the following rules:

If the formal parameter is then the actusl perameter may be
var <ver id> declared ver
const <axpr>
manifest any menifest <expr>
result <ver id>

- Finelly, the set of sctusl parameters must satisfy the following nonaliasing restriction: A
variable mey not be used in more then one var or result position of a single procedure or

INote that for dynamic types, this is a pointer copy.

78 12 21 03¢

Tartan Reference Manual -8~

process call. For the purpose of testing this restriction, imported variables are considered to
be actual parameters bound as specified in the import list.

3.2. Dynamic Allocation

f Each use of the constructor for a dynamic type creates a distinct element of the type. Each such
‘ element remains allocated as long as there is an acte:s path to it

Attributes of the dynamic type are provided when the constructor is used Thus it is possible to
associate objects with different attributes with the same dynamic variable at different times.

Tartan Reference Manual > -9-

4. Statements

<simt> uw <proc call> | <ig> i <stmt> | <gmply> | <block>
| <var id> = <expr>
| if <expr> then <stmt>* { olif <expr> then <stmt>.* }* { else <stmt>* |® fi
| case <expr> { on <oplion> =) <stmt>.* |* esac
| while texpr> do <stmt>? od | for <id> in <range> do <stmt>* od
| goto <id> >
| signal <qusl id> | resignal | assert <expr>
| <stmt> { { on <id>* => <stmt>® }* |
| creste <var id> (<actuais>)
<proc call> ue <qual id> (<actuals>)
<block> 1w <code body>

<code body> = begin { <def-deci> ; }* <stmt>* end

Statements designate actions to be performed Their elaboration results in changes in the execution
state of the program. The <emply> statement has no effect. Labels are used by goto statements in
altering the flow of control in a program. A label is accessible only within the <stmt> it labels and
within 8 compound statement (sequence of <stmt>s separated by semicoions) of which it is a <stmt>.

4.1. Blocks

Some examples are:

begin var x: boolean; x 1= {rue end
begin x 1= y: y t= 23 end

Blocks control extent. A <block> is elaborated when control flows inte it, either because the <block>
is the body of a routine that has been invoked or because the elaboration of another <stmt> has
transferred control to it. First, all declarations and the texts of all module definitions are elaborated, in
lexical order. Next, the <stmi>s sre eisborated as described elsewhere in this chapter. Finally, the
<block> is exited or terminated. If it is exited, control waits for all activations deciared in this <biock>
to become dead or mint, then the extent defined by the <block> is closed and all nondynemic variables
instantiated in the <block> are deasllocated If the <block> is lerminaled, all activations declared in the
<block> are forcibly terminated, and then the <block> is exited The choice between exiting and
terminating the block depends' on how control arrived at the end of the block. If the block came to
an end because 2 handler completed or an enclosing process was terminated, the block is terminated.
Otherwise, it is exited

A <block> is not permitted to export identifiers. Except when used as a routine body, it is an open
scope and has no need to import any.
4.2. Sequenced Statements
Some examples are:
% te 13 yte 25 2103
SumSq te B; for | in 1..10 do SumSq := SumSq + V(i)*2 od

Sequenced statements are elsborsted in the order given, except when thet order is interrupted by a
goto or an exception

4.3. Assignment Statement

Some examples are:

YV(S).Sum := @
nte (3 4u 2y

The asssignment statement “V = E" is a procedure call on an appropriste assignment operator,
defined

e

Tartan Reference Manual -10-

proc “:=" (var LHS: T, const RHS:T)

for arbitrary type T. The value of the second parameter is assigned to the object named by the first
parameter. The parameters are of the same type, and the normal type-checking rules apply.

Assignment operators are defined for all primitive types. Assignment operators are defined for
arrays, records, varisnts, and programmer-defined types if and only if they have no components that
are declared const or are nonassignable by virtue of this rule. An assignment operator that copies the
whole value is automatically supplied for each user-defined type. For dynamic types this is a pointer
copy. Although assignment may be invoked with any variable and value of the type, it requires that
the attributes of its left and right operands be identical, and signals the BadAssign exception if they
are not. The BadAssign exception is also signalled if an assignment involving mismatched array, string,
or set sizes or an activation not in mint state is attempted.

4.4. Conditional Statements
Some examples are:

ilA<3Mul-yll.

if x » @ cond y/x > @ then 2 := ut(y/x) else u e 1.3 q 1= y/x fi

case Tint
on fuchsia -> Hue := cool; Jescription te "Purplish-red”
on puce -> Hue := wuarmg Oescription :e "Srounish-purple”
esac

In the statement “if B then S1 eise S2 fi*, 8 must have type boolean. First, B is elaborated. If the
resuiting value is true, S1 is elaborated; otherwise S2 is elaborated. In the absence of an eise clause,
S2 is taken to be the empty statement, which has no effect

The expression

if Bl then S1 elif B2 then S2 ... elif Bn then Sn eise Sw fi
is equivalent to

it 81 then S1 eise
if 82 then S2 eise

] .H'Bn then Sn else S« fi

fi
fi

In the statement

case ED
on E11,...,Elk -> S1
on E21,...,E21 -> S2

on E.nl.......Em -> Sn
on others -> Sv
essc

The E’s must all be expressions of the same type, and all except EO must be manifest. The type oi
the E's must be fixed, an enumersted type, or 8 defined type that is uitimately defined in terms of
fixed or an enumeration. Any of the E's except EO may be a <range>; such an Eij is treated as the
sequence of values in the range. First, E0 is elaborated The Eij are elaborated snd the results are
compared to EO (in unspecified order). [f EO is equal to some Eij, the corresponding Si is elaborated.
It all comparisons yield false, Se is elsborated Exaclly one Si is elaborated for each correct
elaboration of the case statement. [f the special constant others does not sppesr as the last <option>
and no match is found, an exception (CaseFailed) is signalled

Tartan Reference Manual ell-

4.5. Loop Statemenls
Some examples are:

sle % < 2.5 do x te Fly,x): y te Gly,x) od
for | im 1..18 do V(i) 1= | od
for hue in color do Tint(hue) 1= hue od

The loop while E do S od repestedly elaborates if E then S fi untii E becomes faise. If E is
initially faise, the loop has no effect (other than the possible hidden effects or exceptions caused by
the elaboration of E.)

The for statement for i in R do S od repests the steps
- Bind i (ss a constant) to a vaiue in the range R
- Elaborate S.

once for each element of the range R, in order. [f R has no elements, the loop hes no effect The
scope of the loop constant is restricted to the loop.

4.6. Unconditionsl Control Transfer
An example is:

goto L

The effect of a goto statement is to force control to the beginning of the statement with the given
label. Since the scope rules prevent inheritance of lsbels across closed scope boundaries and
importation of labels, 8 goto can not be used to transfer out of 8 routine or module.

4.7. Exceptions
Some examples are:

signal TooBig
sssert x < @

read(file,x) { on EOF -> gole Exit }
x 1o uel { on Overflow > x 1« @ }

Exceptions are processed by hendler clsuses associsted with individual statements. Each handler
clause associstes processing code with given exceptions. The special identifier others may appser as
the last <id> list of 8 handler clause: it metches sny exception that is not nemed in some other
exception <id> list of the same clause.

When an exceplion is signalied, control is trensferred to the nesrest dynamically enclosing handler
clause that handies the exception, either explicitly or through an others clause; the elaboration of the
handier replaces the elsborstion of the remainder of the statement If this hendler is not in the
currently-executing block, all intervening blocks will be terminsted If a handier is not found within
the currently-executing routine, that routine is terminsted and the exception is resignalled at the point
of call of the routine. If 8 hendler is not found within the currently-executing process, that process is
terminated and the exception is resignelled st the end of the block in which the process activation
wes declared after waiting for control to resch that point and for oll other sctivations declared in that
block to terminate. If no hendier is found in the scope of the exception neme, 8 default haendler will
be supplied to terminate thet block.

Exiting a hendler causes termination of the <stmt> with which it is sssociated [f the hendler
resignels the seme exception or reises a new one, the normal rules for exception procsssing apply.

The resignal commend may be used in sny hendler body to resend thas signel thet casused that
handler to be invoked

AREE

Tertan Relerence Manual -12-

The asser! statement raises the asserlion exception if the <expr> is faise. It is exactly equivalent
to the statement “if ~ <expr> then signai assertion fi".

There is one exception to the rule that an exception must be handied by the block in which it is
signalled or by a caller of that block: the Notify operation on activations or actnames. The effect of a
Notify is as if the Terminate exception were signalled in the currently-executing statement of the
activation named by the Notify command.

4.8. Parallel Process Control
Some examples are:

create P(S)
activate (Pl)
it [sBlocked(Pl) them . . .

The create command instantiates a process, P, as an object of lype activation-of-P. The <var id>
in a creste must name an object of type activalion-of-P that is in mint state. If a process takes any
var parameters, the corresponding actual parameters must have extent at least as great as the
activation variable. The effect of the create is to instantiate an activation of P, bind the actuals of the
create to the formals of P, and set the activation in suspended state.

Each activation has a unique identifying token value of type sctname, and it may be named by one
or more objects of type actname. Except for create, all operations that conlrol parallelism are special
routines that operate on either actnames or activations. These routines control the processes and
parailelism by changing and interrogating the states of individusl activations; they are described in
Appendix [.2.

Note that the extent rules require an activation to be dead or mint before the block in which it is
declared can be exited This provides an implicit join operstion A fork can be obtained with a
series of creates and activates.

Tartan Reference Manual -13-

| float(<actuais>) | boolean | lalch | cher | filel <sctusis>)

)
IMW’]IM('*chu»')"“q."b,,q,’”
soll <actuaie>) | siring(<actusis>)
array (<range> *) of <type> | recerd (<declaration> * |

<type name> == fixed | flost | boolean lalch | char | file | st | string
"“"(“",‘l"""(s""‘""l,'l

array <type name> * d«mm'lm[(w’aﬁymmﬂ.‘]
varient [<type name> (on <option> <) <type name> |* |

dynamic <type nams> | sctivation [<quel id>] | actname

<qual id> { [<qual id>*] }*

In Tartan, 8 <type neme> may be either a simple identifier or an identifier inflected with additional
type names. m«yp.muwmumwwwﬂmwmmmwmn

-mmmmhmmuummm-anmnmmuud
to&dvohmMﬂo&MulM“.u&MuMﬂh

= The <type name> for sn array declered “array(a.b) of D" is “array(1,0]", where | is the <type
neme> of 8 and b.

= The <type name> for an enumeration deciared enum({L1.L2,..Ln] is enum{L1L2,.Ln] :
= The <type name> for an activation declered sctivation of P is activation(P)
= The <type name> for a dynamic type deciered dynemic T is dynemic T.

-Th.dyponun»fwonwdtymhb&ndmhmdﬂddmmddm
name>s in its decleration. For a record declared “record(F1:T1, F2T2, ., Fr:Tn]" the <type
neme> is “record(F 1.TN1, F2TN2, _, FrTNa]", where the Fi osre lists of field names, the Ti
are types, and the TNi are type nemes. Bindings in the declarstion do not sppear in the
type neme.

= The <type name> for a veriant is “varisnt(TT,T1->V1,T2-5V2,.,Tn=->Vn]", where TT is the
<type name> of the tag, Ti is the ith velue of the tag type, and Vi is the <type neme> that
corresponds to the ith velue of the tag type. As a result, two verient <typess are the same if
they specify the same <type>s for all vaiues of the tag.

= The <type name> for a defined type is the neme given in the type definition

S.1. Scsier Types
Some exsmples ere:

Res!
1..10
onum (fucheia, ochre, puce, seffron]

»

Built-in scaler types include fixed, flosl, boolesn, latch, and character. integer and resl must be
constructed es specisl cases of fixed and flosl Ordered scaisr enumersted types ere defined by
providing sn ordered list of velues.

Typ..nndmumm«m»nmmymmmmmummmm
used in declarations. These are attributes and do not affect the type. Although bindings for attributes
mey in genersl be const or manifest, the specifications of fixed and flost require manifest sttributes.

To define 8 type, the <axpr>s in an explicit range must be const or manifest

S.2. Composite Structures
Some exsmples ere:

Tartan Reference Manval -14-

array(1..18) of Color
array (Color) of Reas!

string (18)
record (Name: string(35), Age:Int)

veriant biboclesn (on true -> [nt on feise -> cherl
Nonscaler data structures may be built up in three ways: with arrays (homogeneous indexed linear
structure), with records (nonhomogenecus structures with named fields), and with verizats (structures
whose substructure may very with time). In addition, the nonscalar types sel, siring, and file are
defined.
Legal bindings for fieilds of records and varisnis are var, const, and menifest I[f 8 <binding> is
empty, it is taken to be var.

A variant type must have exactly one tag field The special constant others mey sppesr as the last
<option> of a <variant type>; it matches any constant that does not appear in any other <option>.

The syntax for arrsys provides an abbrevigtion for a sel of types pre-defined as
“array({IxType,EitTypekr)” where IxType is the index type, EitType is the element type, and r is a
(sub)range of IxType. Thus “erray(1.10) of flosl” means “arrsy{intflost)1.10)". Its type name,
“array(int,float]", is written "array[int] of float". As for any type, when an <array type> is used as a
formal parsmeter, the attributes are not supplied The type “srray(A,B) of T" is an sbbreviation for
“array(A) of array(B) of T". Similarly, the array accessor “V(i,j)" is an abbrevistion for "V(iXj)".

RIS . hai i canonh i

5.3. Dynamic Types

Some examples are: i

dynemic Real
dynamic record (Data: Int, Next: ListElt, const Index: Int :e K]

. Vaiues of a dynamic type are pointers ta variables whose structure corresponds to the type
definition. They are initislized to nil. The extent of these variables covers the entire scope of the
type definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable
distinct from all others. The constructor supplies the attributes for this variable; they are not supplied
in the declerstion of the named variable of the dynamic type. Thus a named variable of dynamic type
may at different times point to. several different varisbles having different attributes.

S.4. Process Control Types
Some examples are:

activation of P
atname

Parallel processes are controlled with data of two types -- activetions of processes and actnames,
or nemes of activations. Activalions are instantistions of a given process: an activation may contain at
most one process activation during its lifetime snd then only of the process given in its <type>. An
actname value is 8 pointer to an sctivation Actname variables may contain pointers to activations of

:.ny ?ro:oun: an acinsme verisble may refer o different instantistions of different processes from
me %o time.

An activation is used to control persilel or pseudo-peraiiel execution of a process. At any time it
may be in one of four states: minl, active, suspended, ond desd The extent of an activation variable 1
coincides with its scope. The immediately enclosing block cannot be exited until all activations declared
:lyn::un“wdummwmiswﬁmummwmwﬁd\mtunmd

<«qual id>.

, An sctneme mey refer (o eny instantisted process. A newly-deciered sctneme or activation varisbie
H is initislized to mint

S.5. Defined Types

Some examples are:

T(n)
Sequence (int] (S@)

Programmers may define new types. See section 6.5 on Type Definitions. 5 f

ISR

Tartan Reference Manual -18-

6. Definitions and Declarations

<de!-dec)> uw <declaration> | <mod def> | <rouline def> | <type def> | <generic def> | <gmpty>
| imports <qual id> * | exports <qual id> * | excoplion <id> * | dissble <id> *
| preg <proc cali>,* ;* gorp

<declaration> := <binding> { <id> * { : <type> |® { 1 <expr> |® | * | <binding> { <id> * : <type neme> } *
<mod def> uw module <id> <mod text>
<mod text> u= ; <code body> | <remote inst>

ne

proe <id> <proc text> | fune <id> <func text> | precess <id> <proc text>
| tune * [<unop> | <binop> | <tunc text> !

<routine def>

<func text> uw (<formais>) <id> : <type> ; <biock> | <remote inst>

<proc text> uw (<formels>)3 <block> | <remote inst>

<type def> == lype <type name> { (<formais>) }® s <type>

<generic def> :e generic module <id> [<formais>] <mod text> | generic fune <id> [<formais>] <tunc text>

| generic proe <id> [<formais>] <proc text> | generic precess <id> [<formais>] <proc text>
is <qual id> [<actusis>] | is assumed (<id>)

{ <tinding> <> * 1 <type name> | *

<empty> | ver | const | monifest | result

<remote inst>
<formals>
<bjndin'>

i

6.1. Declarstions
Some examples are:

var =x: Real

conet y:e true

ver Huel, Hue2. Hue3: Calor

ver Tint :« enum(saffron, puce, fuchsia, ochrel
ver V: erray(S..7) of Int

ver . Ml:Mark(S), M2:Merk(7)

manifest Pl: Real :e 3.14

The syntax for declarations allows three kinds of sbbrevistions. If the initislization expression
appears, the type of the veriable is evident from the <expr> snd the “:<type>" may be omitted In
addition, lists of <id>s with the same types or bindings mey be condensed. These abbreviations sre
illustrated by the following five declarations, all of which have the same effect:

ver x,y te @

ver x,ysint 1= @

ver x i1« @, y :t= @

ver nzlnt te @, yilnt 1« 8
ver x31lnt te @; ver ytint ta @

Elaboration of a declarstion csuses instantistion of an object which is the verisble. Esch verisble
has 8 type and & vsive. The type is determined when it is instantiated, but the velus mey be
by further elaboration of the program. A varisble may be restricted to be
entry) or manifest (velue fixed during transiation).

Elaborstion of & declaration proceeds as follows:

- Eveluste the <expr>, if present. l!MthmweMd-dﬂm It must
be manifest in manifest declerations.

= [t the <binding> is manifest, bind the velus of the <expr> to the identifier(s).
- It the <binding> is const or ver, elsborate sny <actusi>s in the <type> and instantiste & new

veriable with the indicated type and attributes for each identifier. If there was an <expr>,
assign its value to each of the new verisbles.

When the type is dynamic, the decleration supplies the <type neme> only (no sttributes). In this case,
only the pointer is allocated st block entry; the aitribules sre supplied when the dynemic type is
actusily (dynamicaily) silocsted

Tartan Reference Manual -16-

6.2. Modules
An example is:

module CounterQef;
begin
exports Counter, Reset, Incr, Value;
type Counter = [nt:
proc Reset (result C:Counter); begin C := 8 end;
proc [ncr(ver C:Counter); begin C 1= C + | end:
fune Yalue(const C:Counter)x:Counter; begin x :» C end |
ond : f

The elaboration of a module takes place during the elaboration of declarations for the block in
which the module is defined This elaboration consists of elaborsting the declarstions of the module in
lexical order, then elaborating the statements of the module.

A module or routine inherits identifiers for definitions (modules, routines, exceptions, and types) from
its enciosing scope. It may explicitly import identifiers of objects from that scope, provided the
objects have global extent. A module, but not a routine, may export definition and object identifiers to
its enclosing scope. Types, named routines, field accessars for records, snd varisbles are exported by
including their names in the exports list of the module. The right to apply infix operators,
constructors, subscripts, “.all", or the cresie command for a type T are exported by including the |
special names Tlinfix, Tconstr, T'subscr, Tall, and T'creale, respectively, in the exports list. Litersis
of enumerated types are exported sutomatically if the types are exported

6.3. Routines | 3
Some examples are:

proc Fivar x:lnt); begin x :e - x; ond

proec G is GenG (S)

tune 1aNil (x:0ynT)y:boolesn; begin y t= (x « nil) end
fune “+° (a,bigorplc:gorps

begin

imports Bias:

C te gorp’ (a.leftsb. leftsBias, a.rightsb.rightsBias)
end

A routine is a closed scope whose body is a block. Thus its body controls extent for local
declarations, but does not inherit identifiers for (non-manifest) objects or labels. The <formals> list
declares the identifiers for parameters. |

A routine may be a function (func), which returns a vaiue and has no visible side effects; it may be
a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a
process, which is a potentisily-parallel procedure. Specisl type-specific routines are described in
Appendix .2

Routine names may be averloaded by binding the same identifier to seversl definitions with different
numbers or types of parameters. The functions for which specisl infix notation is provided are
obvious candidates for overicading.

It a <binding> in a routine header is omitted, it is sssumed lo be const The result binding may be / |
used only in procedures. No duplication of identifiers within the <formals> list is permitted, and i
parameter names may not conflict with declarations or imports in the routine bedy. ; |
6.4. Exceptions

Some exsmples are:

enception TooBig, TooSmall, Late, Singuiar |
diseble TooBig, TooSwal! |

Tartan Reference Manusl -17-

The scope of an exception name is the block in which it is declared A disable declaration in an
inner block suppresses detection of the exceptions it names. A handler clause associates recovery
code with a statement that may generate an excaption (see section 4.7).

The disable declaration permits exceplions to be individuslly suppressed within a given scope.
Should an exceplion occur when its detection is suppressed, the consequences are not defined An
exception must not be signalled or redeciared in a scope in which it is suppressed. Note that
suppression of an exceplion is not an assertion that the condition that gives rise to the exception will
not aceur.

Standard excaptions will be deciared in the global extent

§.5. Type Definitions
Some examples sre:

type Counter « [nt
type Matrix(niint) « srray(l..n.1..n) of Resl

A user may introduce 8 new type into his program with 8 lype definitionn The type definition itself
merely introduces the <type name> and defines the representstion of the type. Operations are
introduced by writing routines whose formsl parameters are of the newly-defined type. Scope
boundaries, particularly module boundaries, play no role in the definition of the type. There is, as a
consequence, na notion of the complete set of operations on 8 type.

A type definition may be paramelerized. The bindings in the formal psrameter list must be const or
manifest. If a <binding> is omitted, it will be assumed to be consl. The names of the formal parameters
of the type sre available throughout the elasboration of the program as constants, called sttributes.
They are accessed by tresting the <var ident> as a record and the type attribute as a field.
Attributes for primitive types are given es pert of the lype definitions.

Within the scope in which the lype is defined, the qualifier Rep mey be used to indicate that the
object nemed by the identifier Rep qualifies is to be trested ss if it hed the underlying type. This
allows operastions on the new type to be written using operations on ils representstion When no
ambiguily arises, the Rep qualification mey be omitled

6.6. Generic Definitions
Some examples are:

goneric proc Reset (Tt typel (var x:T): begin x to x"min ond
proec ResetColor is Reset(Calor)

proc ResetX is Reset (Sample)

module Stack is asssumed(StackOef)

goneric module Ringlef(K: Intls

begin
exports Ring, Next;
type Ring « fined(1,0,8,K-1)¢
tune Next (RiRing)IN:fined(1,8,8,K-1); bogin N := mod(Rs] X); end
end
module RS is RingDe! (S)
module R is RingDet (9]

A generic definition is syntactically like the corresponding specific definition except that it is
prefixed by the word generic end it mey Nave s set of generic perameters (enclosed in squere
brackets) sfter the definition neme. For generic definitions, type is scceplable ss 8 formel <type name>.

The actual perameters supplied in an instentistion of & generic definition masy be sny defined
identifiers, including those for verisbles, functions, types, or modules, or any expression. When the
generic definition is instentisted, the text of the sctusi perameters repleces the identifiers that
represent the formal persmeters. The substitution is done on @ lexical, rather then a strictly textual,
besis. That is, the identifiers in the generic definition sre renamed ss necessery to avoid conflicts
with the identifiers in the ectusl perameters.

Tartan Reference Manual -18-

Both generic definitions and remotely-defined modules or routines may be incorporated in a program
as remote instances. A remote instance may be an instantiation of a generic definition or a reference
to a definition given elsewhere.

A module or routine that is used by the program but whose definition is given elsewhere (e.g, in a
library) is incorporated by writing is assumed(<id>) as the body of a3 module or routine definition. The
<id> is used by a pragmat to locate the remote definition

A generic definition is instantiated by referring to it as the body of a module or routine definition.
The effect of the instantiation is as if the generic definition were lexically substituted in place of the
reference to it. That is, the body of the module or routine being defined becomes a copy of the
generic definition

An instantiation of a generic ‘definition may be used as the body of a specific module or routine. The
ususl restrictions on defining new identifiers apply to the module or routine being defined in terms of a
generic.

Generic type definitions arise from generic modules. They are instantisted when the module is
instantiated. Thereaiter, they may be used in declarations or definitions.

if the generic definition has generic parameters, the actual parameters supplied with the
instantiation must have correponding types and be syntactically suitable for substitution.

If a generic definition is instantisted more than once in a scope, ambiguous names may be
introduced. The usual rules for resolving such ambiguities apply.

6.7. Translstion [ssues
An example is:

prog Optimize(space): Listing(Off) gerp

A program is a <block>. The extent defined by the outer block of the program is the global extent.

The transistor may be guided by <pragmat>s. Prasgmats have the same syntax as procedure calls.
The set of pragmet names and the interpretations of the arguments are determined by each transiator.
Transiators will ignore pragmats whose names they do not recognize.

A program may be broken into separately defined segments. This decomposition must take place in
the giobal extent. The units of separate definition are modules and routines. The definition

module O is assumed(])

in a segment has the effect of making the semsntics of the segment the same as if the (separately
defined) text of Q had been substihi’ed for “is sssumed(l)”. The identifier | refers to a file, library, or
other facility for storing separately defined segments. The relation between the identifier | and that
storage facility may be established by 8 pragmat.

It is a matter of optimization whether the seperate definition is included as text or separately
translated and linked in. In order to perform independent transiation of a seperstely defined component,
it is necessary to embed the module or routine being transiated in an environment that supplies
definitions for all the names it inherits or imports. This environment must form a complete program.
It is sssumed that the transistion system provides commands for selecting which components of such a
transiation to save and for determining where and in whet form they sre to be saved.

Tartan Reference Manual -19-

I. Standard Definitions

L1. System-Dependent Characteristics

The trensiatc. for each system is assumed to provide a module in the global extent that defines
appropriate system constants. Such constants are assumed at various points in the language definition;
these and certain others are summerized here in the form of a skeleton module.

module Sys:

begin

exports . . . ! exports all definitions below
type [nt « fixed(. . .) * ! sppropriste to the machine

! Note Int.Min and Int.Max give range

type Reasl = flost(. . .) ! asppropriate to the machine
! Attributes give renge, precision, scale

const . . . ! constants that descibe properties of the
! object machine
proe . . . ! procedures for accessing facilities of the
! operating and file systess
exceptions . . . ! Syetem-defined exceptions such as Assertion, BedAssign....
ond .

1.2. Properties of Types

All types have assignment operators and routines for conversion to sppropriste other types. In
particular, the scalar types have routines for converting to and from cherscter strings. ANl nonscsler
types have constructors. The sections below skelch some important properties of the built-in types.

1.2.1. Fixed
Literals: digit strings
Attributes: Min, Max, Precision, Scale

Infix operations: Arithmetic and relationel
Specisl routines: rounding, truncation

1.2.2. Floet . ¢
Literals: digit strings with decimal point
Attributes: Min, Max, Radix, Precison, MinExp, MaxExp

Infix operstions: Arithmetic and relstionsl
Specisl routines: rounding, truncation

1.2.3. Enumerations

All enumerations sre ordered The litersls sre sssumed to appeer in the declerstion in increasing
order.

Literals: As given in definition
Attributes: Min, Max

Infix operstions: Relational

Specisl routines: suce, pred

Tartan Reference Manual _ -20-

1.2.4. 8odlean
Liter. - true, faise
Attributes: none
Infix operations: logical
Special routines: none

1.2.5. Cheracters
Literals: Quoted characters
Attributes: Min, Max

Infix operations: none
Special routines: as for enumerstions

1.2.6. Latches

A latch is a simple spinliock for mutual exciusion If the lalch is open, it is avasilable for siezure: if it
is closed, a Lock command will wait on it
Literals: open, closed
Attributes: none
Infix operations: none
Special routines: Lock, IfLock, Unlock

1.2.7. Arrays

Literais: none

Attributes: Range, EitType

Infix operstions: none

Specisl operations: subscript, subarray, catenstion, upper bound, lower bound

1.2.8. Sets
“Sets” are booiesn vectors on which some additional operations sre defined
Literals: emptly
Attributes: EitType, MaxSize
Infix operations: logical

Specisl operations: subscript
1.2.9. Dynsmic Types

Literals: nil

Alttributes: The nemed varisble does not itseif have atiributes, but the dynemic
varisble that it references may.

Infix operations: none '

Specisl operations: .all denoles whole velus of dynemic object, as distinguished from
the reference. A dynemic constructor sllocates 8 new dymamic object.

Specisl routines: none

1.2.10. Records

Literals: none

Attributes: individuslly defined with record type
Infix operstions: none

Specisl operations: field selection, constructors

Specisl routines: nons

st bl

et WDRPCARPP P

i
!
!
{
;

1 Tartan Reference Manual
1.2.11. Varianls
Literals: none
Attributes: individuaily defined with variant type

Infix operations: none
Special operations: veariant must be designated to reference contents
Special routines: none

1.2.12. Strings
Literals: Quoted strings
1 i Attributes: Length

Infix operations: none
Special operations: subscript, substring, catenation

[.2.13. Activations

Literals: mint
Attributes: none
Infix operations: none

Special operations: creste
Special routines: To change state: Activate(A), Suspend(A), UnlockAndSuspend(A,L),
UnlockAndActivate(A,L), LockAndSuspend(A,L), LockAndActivate(A L),
Terminate(A)
To query state: IsMint(A), IsAct(A), IsSusp(A), IsTerm(A)
To obtain actrame: NameQf(A), Me()
To sent exception: Notify(A)
Other: Priority(A), SetPriority(A), Time(A)
where A is an aclivation or sctneme and L is a latch

Assignment causes the BadAssign exception if either the vaiue or the varisble to which it is being
assigned is in a state other than mint

1.2.14. Actnemes

Literals: mint
Attributes: none
Infix operations: none
Specisl operstions: none
Special routines: Same

1.2.18. Files
A minimal input-output facility will be provided

L.3. Alphabets

The following context-free substitutions reduce the siphebet used in this report to the stenderd
64-charscter ASCIl subset. Note thet some identifiers sre pre-empled ss 8 result

Substitute the ASCII string:
upper case A.2

vaRgoys

Tartan Reference Manual -22-

II. Collected Syntax

<const> uw <digit>* { . <digit>* }® | true | faise | nil | closed | open | mint | empty
| <constructor> | <id> | <qual id> ' <const> | <type> ' <const> | <expr>

<constructor> :w (<expr>?®) | ({ <option> <> <expr> } *)| * <char>* *
<var id> uw <qual id> | <var id> (<actuals>) | <var id> . <id> | <var id> (<range>) | Rep’ <id>
<range> uw <gupr> . . <expr> | <type>
<option> uw { <const> | <range> } *
<qual id> um { <id> ')® <id>
<id> ww <igtter> <letter or _ or digil>®
<expr> uw <unop>® <ver id> | <unop>® <const> | <unop>® <func call>
| cunop>® (<expr>) | (<expr>) . <id> | <expr> <binop> <expr>
<unop> uw e|e
<binop> e | /el CIgI>12]n|#|A|cond|v|cor|t
<func call> uw <qual id> (<sctusis>)
: <actuais> E mao.‘
3 <stmt> uw <proc call> | <id> : <stmt> | <emply> | <block>
i | <var id> = <exor>
| if <expr> then <stmt>.® { olif <exor> then <stmt>,* |* { else <stmt>* |® f
| case <expe> { on <oplion> <> <stmt>.® }* eese
|m«m>a<nm>'u|nr«bhm.>a<.m, od
| goto <id> .
| signel <qual id> | resignal | sssert <expr>
| <stmt> { { on <id> * «> <stmt>* }* }
| create <ver id> (<actusis>)
<proc call> ww <qual id> (<actuals>)
<block> uw <code body>
<code body> == begin (<def-dect>; }* <stmt>® ond
<type> - M«muwnm«mmdvnmumlwwdcmi

| enum({ <id> * 1IM('<chv>'} 11 <expr> .. <axpr>

sal(<actusis>) | string(<actuais>)

(<range>*) of <type> | record [<decteration> *]
'dndanﬂo»((uwooﬂov =) <type> }*]

ic <type> | activation of <quel id> | sctneme

name> | (<actusis>) |®
IM!MHMIM'MOHQHM

<id>*] | enum{ { ° <char>“ }
[W”m”]d«mm’ln&d[(w‘:ﬂynm’)“
(dynnm’(mmtbn’-)ﬂmm»}‘f

;3

i

{;

<type neme> =

*

"ﬁi

dynamic <type m’lmhtwwllm
<quel id> { (<quel id>*] |*
<def-deci> = <declaration> | <mod def> | <routine def> | <type def> | <generic def> | <empty>
|MWO‘IMMO‘IMQ”I“@’
! | preg <proc caii>.* ;* gorp
<declaration> :e <binding> { <id>* { s <type> | [= <expr> |® } ¢ | <binding> { 4d> * 1 <type neme>] *
<mod def> ze module <id> <mod text>
<mod text> uw 3 <code body> | <remote insl>
<routine def> z= proe <id> <proc text> | fune <id> <func text> | process <id> <proc lext>
| fune © { <unop> | <binop> | * <fune text>
<func text> uzw (<formais>) <id> 3 <type> ; <biock> | <remote inst>
<proc text> e (<formsis>); <block> | <remote inst>
<type def> ww type <type neme> { (<tormais>) |® ¢ <type>
<generic def> := generic medule <id> [<formals>] <mod text> | generic fune <id> [<formais>] <func text>

| generie proe <id> [<formais>] <proc text> | generic precess <id> [<formeis>) <proc text>
is <qual id> [<actusis>] | is sssumed (<icd>)

{ <binding> <> * 1 <type name> | *

<empty> | ver | const | menifest | result

<remote inst>
<formais>
<binding>

i

’ - “SECURITY CLASHISICATIZ g ok Toulh 108 o (Whan (1ars tEiare i -

£
: - READ INST X
REPORTDUTUMENTATION PAGE HEROLE roa e
. REPORT NUMBER - 2. COVY ACCESSION NQ| 3. RECIPIENT'S CATALOG 'NUMBER
AFOSR-TR- 78-1521 7
4. TITUE (and Subtitie) ; A S. TYPE OF REPORT & PERIOD COVERED 1
=l)
TARTAN. LANGUAGE DESIGN FOR THE IRONMAN REQUIRE- Interim
- MENT: REFERENCE MANUAL 6. PERFORMING ORG. REPORT NUMBER
. CMU~-CS-78-133 —
7. AUTHOR(®) : 8. CONTRACT OR GRANT NUMBER(S)
Mary Shaw, Paul Hilfinger, Wm. Wulf . F44620‘73_C-0074 —
9. PERFORMING ORGANIZATION NAME AND ACORESS 10. PROGR.AM E‘{.EMENYT PROJECT, TASK
S Carnegie-Mellon University : 5 i R 5 o
2 Department of Computer “Sciance e B At 61101E L S e }
. Pittsburgh, PA 15213 ez, © A02466/7 . v
4 1. CONTROLLING OFFICE NAME AND ADDRESS -| 12. REPORT DATE >
Defense Advanced Research Projects Agency) : //'.
- June 1978
o : 1400 Wilson Blvd. : 13. NUMBER OF PAGES :
. "Arlington, VA 22209 22
3 P Y& MONITORING AGENCY NAME & ADDRESS{I! ditterent lrom Controlling Oftice) | 1. SECURITY CLASS. (of thie report)
" . Air Force Offlce of Sc1ent1fic Research (NM) : UNCLASSIFIED 1
Bolling AFB pe’. - 20332 . : X - [TSe pE L ASSIFICATION/SOWNGRADING - g

16. DISTRIBUTION STATEMENT (of th!s Report)

-} . Approved fof public releése; distribution unlimiteqfv - _'~ _'{- =

17. OISTRIBUTION STATEMENT (of the abetract entered in Block 20, I dillerent lrom Report)

.

18. SUPPLEMENTARY NOTES . o L.

19. KEY WORDS (Continue on reverse aide If necessary and Identily by block number)

\\\ :
20. ABS?R)ﬂ—;CMlMuo on reverse side Il necessary and (dentily by biock numbor)
artan is an experiment in language design. The goal was to determine i
whether a “81mple“1anguage could meet substantially all of the ironman. i -
requzrement for a commop high-order programming language. 3 e

. was yndo-ta\ e 1y wes 4
Ue—anda;toek thls expef1ment,because believed thax all the designs
done in the firsf phase of th DOD effogzsnere too large and too complef

We—aau that complex1ty,as a serious failuré of the designs; excess complexit

DD ':2:“" 1473 €O:TION OF 1 HOV 6315 ODSOLETE UNCLASSIFIED

S/N 0102:014-6601 . SECURITY CLASSIFICATION OF THIS FAGE (When Dete Entered)

T —TT—. v T

S
UNCLASSIFIED . : | iR
)
0"{\
20. Abstract continued.
in a programming language can interfere with 1ts_#sq,kexen to the extent that any
beneficial properties are of little consequence. §E'wanted to find out whether the
requirements inherently lead to such complexity or Whether a substantially simpléfq‘"
language would sufflce.

“>Three ground rules drove the experiment. First, no more than two months —- April 1 to
May 31 -- would be devoted to the project. Seccnd, the language would meet all the
[ronman requirements except for a few points at which it would anticipate Steelman
requirements. Further, the language would contain no extra features unless they resulted in a
simpler language. Third, simplicity would be the overriding objective.

e

The resulting language, Tartan, is based on all available information, including the design:
lalready produced. The language definition is presented here; a companios report provides an
overview of the language, a number of examples, and more expository explanations of some of
the language features.

We believe that Tartan is a substantial improvement over the earlier designs, particularly |
its simplicity. There is, of course, no objective measure of simplicity, but the syntax, the
size of the definition, and the number of concepts required are all smaller in Tartan.

Moreover, Tartan substantially meets all cf the Ironman requirement. (The exceptions lie in
,a few places where we anticipated Steelman requirements and where details are still missing
Ifrom this report.) Thus, we believe that a simple language can meet the ironman requirement.

artan is an existence proof of that.
‘p 1+ be

Akrmust1empha=1ze agair: that this effort is an experiment, not an attempt to compete with
DOD contractors. Tartan is,however, an open challenge to the Phase II contractors: The
language can be at least this simple! Can?;gutdo better?

PP

e NS S ST A PP G i o

